Solar Cycle & Temperature Trends: AIRS Data at 400 hPa

Alexander Ruzmaikin & Hartmut H. Aumann

in collaboration with Joan Feynman & Yuk Yung

Jet Propulsion Laboratory & California Institute of Technology

A Challenge

Mid-Tropospheric Temperature is sensitive to:

- CO2
- SST (Pacific and Atlantic Multi-Decadal Oscillations)
- Solar Irradiance

• . . .

Study temperature response in region 0-20°N using 5 yrs of Airs data

Data

- Airs L1 B daily zonal mean T using 2388 cm⁻¹ (4.3 μm CO₂ line) in region 0-20°N, clear sky and random
- Airs L3 data for monthly T at 400 hPa
- NCEP SST
- CO₂ at Mauna Loa

Methods

- Linear Trends
- Empirical Mode Decomposition (Huang & Wu)

Total Solar Irradiance

- Varies by 1 W/m² from solar max to solar min
- Estimated response of the Earth's global temperature 0.1- 0.2K
- Now in the declining phase of the solar cycle

Expected Solar Cycle Effect

TUNG AND CAMP: SOLAR CYCLE WARMING

Expected cooling in 0-20°N is ~ 0.15 K for the 5 yrs of Airs (30 mK/year)

CO₂ Trend (MLO)

Linear Trend
2.06 ± 0.1 ppmv/year
in 2002-2006

Using sensitivity 40 mK/ppmv at 400 hPa gives 80mK/year shift in weighting function

Airs Clear Sky

Airs L3 Monthly

Linear Fits to Trend

mK/year

Solar expected -30 ± 7

NCEP Tropical Ocean -30 ± 7

Airs L3 Monthly -30 ± 42 Corrected for CO₂ trend

Airs L1 B (clear sky) -52 ± 7 Corrected for Freq Shift + 10 ± 1

 $+28 \pm 9$ Corrected for CO_2 increase $+80 \pm 2$

Conclusions

- The linear fit to trend from Airs L3 monthly shows solar cooling but error is large
- Effect of solar cycle cooling needs further study with L3 8 day-average
- Clear sky data indicate warming spots (~ 1%)
- Trends are basically non-linear